IRRIGATION;
IRRIGATION METHODS,
CROPS,
PLANTING PRACTICES,
AND
FERTILIZER SURVEY
IN
THE BAMYAN AREA

by

Abbas Frahmand

Technical Bulletin No. 15
KABUL UNIVERSITY
FACULTY OF AGRICULTURE
Kabul, Afghanistan
May, 1969
ACKNOWLEDGMENTS

A trip to Bamyan was made from July 26 to August 13, 1967 for the purpose of studying irrigation, crops, fertilizer, and planting methods in that area.

I would like to thank Dr. King, Columbia Team; Dr. S. A. S. Gazanfar and Dr. G. H. Benham, Kabul Research Center; and Dr. Shah M. Alekozai, Dean of the Faculty of Agriculture for supporting this project.

Thanks go to Professor H. W. Pillsbury and Professor T. L. Loudon of the Wyoming Team, for helping to start the project. Much appreciation is given Mr. Rasuly, the Advisor of the group, who encouraged me and other friends to work hard.

Thanks also go to Mr. Packtiani, Mr. Amir Shah, Mr. Ariž, and the Welsh College students from England, who were on this trip with me.
IRRIGATION, IRRIGATION METHODS, CROPS, PLANTING PRACTICES, AND FERTILIZER SURVEY IN THE BAMYAN AREA

by

Mir Abbas Frahmard, Plant Science Technician

Technical Bulletin No. 15

KABUL UNIVERSITY
FACULTY OF AGRICULTURE
Kabul, Afghanistan
May, 1969

Information Taken July 28 to August 13, 1967

Advisors: H. W. Pillsbury, American Plant Science Advisor
T. L. Loudon, American Agricultural Engineering Advisor
TABLE OF CONTENTS

MAP OF AREA .. iv

INTRODUCTION 1

I. IRRIGATION PRACTICES 1

II. IRRIGATION METHODS 3

III. CROPS ... 6

IV. PLANTING AND HARVESTING PRACTICES 7

V. FERTILIZER ... 7

VI. ANIMAL PROBLEMS 8

SUMMARY AND CONCLUSIONS 9

LIST OF FIGURES

Figure
1. Average Length of Canals From Water Source to Farms in the Banyan Area 4
2. Number of Washouts and Days Out Before Repair .. 4
3. Amount of Water Used at Each Irrigation ... 4
4. Depth to Which Soil Was Wetted When Allowed Water Was Applied 5
5. Intake Rate of Water Into Soil .. 5
6. Slope of Farmland 5
INTRODUCTION

This survey project started when I was appointed to go into the Bamyan area with a group of Welsh College students from England to study agriculture and act as official interpreter.

To obtain background information about Bamyan, discussions were held with officials of the Ministry of Agriculture and Irrigation. They had no survey or other research reports specifically about the agriculture in that area. Little pre-trip information was gathered.

The time allowed for doing this survey was rather short, yet much was accomplished. Two hundred and sixty farmers were contacted in fifty-two locations. Each location represented a different interview. The questions asked required from one-half to three-quarters of an hour to answer, but the interest of the farmers often made the interviews much longer. In some cases, much time was required in trying to gain the confidence of the farmers, for village people of Afghanistan are very suspicious.

When the questions asked pertained to the land itself, one farm was selected and reported on. Many farmers were present at each location. This accounts for the 260 individuals mentioned above.

Although the work was difficult at times, it was also very successful. It is felt that the information obtained will be of benefit to the Faculty of Agriculture and to Afghanistan as a whole.

I. IRRIGATION PRACTICES

A survey of fifty-two locations in the Bamyan Valley, selected at random, showed that 92 percent of the farmers used river water for irrigation. The other 8 percent used spring water. The main rivers used for irrigation were the Pooladi, Kakrak, and Sorkhdara. The waters of these rivers were diverted by canals to the farmers. The length of the canals from the diversion dams to Bamyan Valley farm land was divided as follows: 13 canals were less than 1 kilometer, 26 were from 1 to 5 kilometers, 7 were from 5 to 10 kilometers, 2 were more than 10, but less than 20 kilometers. Two farmers did not give the distance. The irrigation water was distributed by group agreement and distribution was dependent upon the individual farmer's honesty. (See Figure 1).

Canal maintenance was done each year by the farmers as a group. They had no "ditch" rider, as the term is used in Kabul. A ditch rider is a person who
walks from morning until evening along the canal from the diversion dam to the farmer’s field to repair leaks or washouts. The diversion dams in the Bamiyan area were made from sod, stones, and mud, and were not very strong. They washed out at least once or twice a year and sometimes more often. They would be out from one day to two weeks until replaced by a group of farmers. These washouts were reported by 79 percent of the farmers interviewed. The remaining 21 percent did not have washouts or did not care to answer. Figure 2 shows the number of reports indicating washouts and the days reported before repair.

There was no charge for water in the Bamiyan area except the cost of securing it, and 54 percent of the farmers were able to use any amount they desired. The rest of them had to take turns having ditch water one day a week, except in Talbootil and Jugrakhil in the north and Dasht-e-Esakhan in the southwest, where water was received every ten to twelve days for one day. If, on that day, a farmer was not able to irrigate some of his fields, he would be out of irrigation water from twenty to twenty-four days. When this happened, it was obvious that crops would suffer due to lack of sufficient water.

Seventy-five percent of the farmers felt they had adequate water to irrigate their lands properly. The Dasht-e-Esakhan area, with 1600 jeribs of cultivated land, was in a poor location because the sources of water were the Rust Dara and Chap Dara Rivers. These rivers are fed by melting snows in the mountains and this source was not sufficient to provide adequate water. In this area, the farmers must plant crops which require less water than mung beans or barley.

A shortage of water annually occurs in late summer in the Bamiyan area and seriously affects yields. Mung beans and barley were especially affected, as they need much more water than wheat. In the Bamiyan area, there was no extra source of water from karizes or wells. Eleven percent of the farmers, however, were able to get extra water for irrigation from other than their regular rivers and springs. For example, Dawoodi and Jugrakhil farmers had to irrigate their lands before there was a shortage of water from the Sorkhda River which comes from the Bandi A米尔 area. This river is usually short of water when crops are nearing maturity. At this point, farmers turned to the Fooladi River, whose source is the Kohi Baba mountain, even though this was not as convenient as the Sorkhda.

Dawoodi and Jugrakhil farmers mentioned that they hoped the governor would help them prepare culverts to divert the water from where the grinding mills are located below Talbootil, for there the water is run to the Fooladi River after turning the millstones. The farmers needed about 500 culverts to be assured of water throughout the growing season.

Dasht-e-Esakhan farmers also said they would be able to have extra water from the Fooladi River if the governor would help them. Ninety-seven percent stated that they do not have enough money to develop their own water system.

Farmers determined when to irrigate by how the plants looked or when water was available. They did not use the “feel method” of the soil as a guide. Farmers who did not have adequate water would wait for 6 to 14 days
between irrigation periods. Forty-two percent of the farmers answered that the availability of irrigation water and the maturity of crops affected their irrigation timing.

The farmers that did have sufficient water were asked, "How much do you put on (your fields) each time you irrigate?" Nine of them answered 0 to 4 cm; 28 answered 4.1 to 6 cm; 15 answered 6.1 to 8 cm. (See Figure 3). Also asked was "How deep does this amount (of water) wet the soil?" Eight of the farmers answered 0 to 30 cm; 20 answered 30 to 45 cm; 13 answered 45 to 60 cm; 7 answered 60 to 75 cm; and 3 answered 75 cm to 1 meter. One gave no answer. (See Figure 4).

According to most farmers, the intake rate of these soils was 2 to 5 cm/hr. Seven of the farmers said that their soils would take 1 cm/hr or less (very slow); four said 1 to 2 cm/hr (slow); sixteen said 2 to 3 cm/hr (medium); twenty-four said 3 to 5 cm/hr (fast); one gave no answer. (See Figure 5). They also said that the water actually stands on the soil less than two hours as a rule. A few said less than one hour. Fifty-six percent answered that the rate was approximately the same for all their basins. The balance noticed only slight difference in rates between basins.

Water was indirectly applied to their basins. That is, the water had to run across one basin to get to the others on 74 percent of the farms. The balance of the farmers used water directly from a ditch to each basin.

II. IRRIGATION METHODS

All farmers in the Banyan area used flat basin or ditch-basin methods. The basin method was used mostly on wheat, barley, beans, shakhal, and klool. (Shakhal and klool are legumes used as green animal feed or dried for storage). The ditch-basin method was used for potatoes (with deep furrow and high ridge), cucumbers, carrots, and other vegetables.

Most farmers believed that the flat basin method was the best for the Banyan area. Apparently they did not have any thought of changing from basins to open furrows or rows. Ten percent, however, stated that furrows on flat lands would be the best. They said that furrows on slopes have several weaknesses. Some of the most common remarks were:

1. The furrows would wash out quickly.
2. The fertilizer used would be washed out if a heavy rain falls.
3. Making furrows took more time than making basins.

Most farmers felt that furrows would not give them any more planting area nor produce better crops.

In general, the slope of the land was from 0.5 percent to occasionally more than 6.0 percent. See Figure 6 which indicates that most farmers interviewed had slopes of 3.0 percent or less to deal with. These slopes were determined by a hand held at eye level. The average size of the basins was from 0.2 to larger than 0.5 jerib. Most of them plowed each basin as an individual
Figure 1. Average Length of Canals from Water Source to Farms in the Banyan Area

Figure 2. Number of Washouts and Days Out Before Repair

Figure 3. Amount of Water Used at Each Irrigation

Distance in Kilometers: 0 to 1.1 to 5.1 to over 10
Days Duration: 1 to 3 to 8 to over 14
Water Used in Cm: 0 to 4.1 to 6.1 to 8
Figure 4. Depth to Which Soil Was Wetted When Allowed Water Was Applied

Figure 5. Intake Rate of Water Into Soil

Figure 6. Slope of Farmland

<table>
<thead>
<tr>
<th>Depth in Cm.</th>
<th>Number of Interviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 30</td>
<td>8</td>
</tr>
<tr>
<td>30 to 45</td>
<td>12</td>
</tr>
<tr>
<td>45 to 60</td>
<td>14</td>
</tr>
<tr>
<td>60 to 75</td>
<td>10</td>
</tr>
<tr>
<td>75 to 100</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intake Rate in Cm.</th>
<th>Number of Interviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 1</td>
<td>5</td>
</tr>
<tr>
<td>1 to 2</td>
<td>13</td>
</tr>
<tr>
<td>2 to 3</td>
<td>12</td>
</tr>
<tr>
<td>3 to 5</td>
<td>10</td>
</tr>
<tr>
<td>5 to 10</td>
<td>7</td>
</tr>
<tr>
<td>10 to 20</td>
<td>5</td>
</tr>
<tr>
<td>20 to 50</td>
<td>3</td>
</tr>
<tr>
<td>50 to 100</td>
<td>2</td>
</tr>
<tr>
<td>100 to 200</td>
<td>1</td>
</tr>
<tr>
<td>200 to 500</td>
<td>1</td>
</tr>
<tr>
<td>500 to 1000</td>
<td>0</td>
</tr>
<tr>
<td>1000 to 2000</td>
<td>0</td>
</tr>
<tr>
<td>2000 to 5000</td>
<td>0</td>
</tr>
<tr>
<td>5000 to 10000</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent Slope</th>
<th>Number of Interviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

Depth in Cm. | *Intake Rate in Cm.* | *Percent Slope*
field, thus avoiding the problem of slope. Most farmers interviewed said they owned more than 5 jeribs of cultivated land, and most of this land was divided into 10 basins or more (full data available in original notes which are too voluminous to place in an appendix).

III. CROPS

The most important crops in this area were wheat, mung beans, alfalfa, shakhal (vetch), klool (vetch), tobacco, and potatoes. Besides these, there were small amounts of clover, onions, carrots, squash, cucumbers, and merel (tara). It is probable that in Bamyan, many other crops and vegetables could be grown, but the people do not seem to be interested in them.

To gain a better understanding of the crops in the Bamyan area, the Director of Agriculture was contacted. He mentioned that the Ministry started its first distribution of Justen wheat in 1345 (1966), this wheat having first been planted as a research project in 1344 (1965). Three hundred forty-two seers of this variety were distributed to the farmers. This wheat requires only a short season and is well adapted to the Bamyan climate. Justen also has good resistance to rust and wind. The Director of Agriculture said they measured a yield of 60 seers per jerib from 4 seers of planted seed or a 15:1 return ratio. If the soil is good, one could possibly receive yields up to 120 seers per jerib.

This year, 1346 (1967), the Ministry of Agriculture also distributed some vegetable seeds to the farmers. They were: eggplant, tomato, radish, squash, watermelon, carrot, spinach, turnip, beet, and different types of beans. The Director said that radishes and squash gave good results in cooler areas, and watermelons, eggplants, and tomatoes grew well in warmer areas around Bamyan. Onions were harvested at two main periods; once for tops, and a second time after the bulbs had formed.

Rotation patterns were essentially the same for all farmers. They plant in consecutive years mung beans—1st, barley—2nd, and wheat—3rd; or wheat—1st, mung beans—2nd, and wheat—3rd. A few farmers plant potatoes—1st, klool—2nd, shakhal—3rd. Farmers usually planted about twice as much land to wheat as they did to either mung beans or barley. This was very important to Bamyan farmers because they made the most money from this crop. Their income varies from year to year because of crop rotation, yet the land will not withstand continuous planting of one crop.

On the average, farmers allocated their land as follows:

<table>
<thead>
<tr>
<th>Crop</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wheat</td>
<td>46%</td>
</tr>
<tr>
<td>2. Beans</td>
<td>22%</td>
</tr>
<tr>
<td>3. Barley</td>
<td>21%</td>
</tr>
<tr>
<td>4. Potatoes</td>
<td>8%</td>
</tr>
<tr>
<td>5. Alfalfa</td>
<td>1.5%</td>
</tr>
<tr>
<td>6. Kool</td>
<td>1.1%</td>
</tr>
<tr>
<td>7. Clover</td>
<td>0.30%</td>
</tr>
<tr>
<td>8. Shakhal</td>
<td>0.05%</td>
</tr>
<tr>
<td>9. Tobacco</td>
<td>0.05%</td>
</tr>
</tbody>
</table>
IV. PLANTING AND HARVESTING PRACTICES

The farmers were asked the approximate planting time of their most important crops. The answers were: wheat, between March and April; barley, early March; mung beans, March and April; and potatoes, April and May.

Weather affected the planting date. Most farmers waited until the rains stopped and the soil condition was right. Some of them said they waited until both soil and air temperature were warm. For 50 percent of them, it was necessary to irrigate before planting. The rest of the farmers might also irrigate if there was not enough rain. This last group of farmers had lands suited for holding moisture for a long time. It was also learned that based on the above planting dates, crops would be ready for harvest during the following periods:

- Wheat — Early August to late September
- Barley — Mid-July to mid-August
- Beans — Mid-September to mid-October
- Potatoes — Early October to late October

If money was not in great need, the farmers stored their crops after harvesting and sold them the following spring. Other farmers would keep some produce for themselves and sell the rest immediately. Some said they exchanged crops for other things they needed for winter, such as fresh or dried fruit. These exchanges occurred in the local bazaars where farmers brought all their exchangeable crops. This was a type of barter system where the crops had previously agreed-upon values, as one related to another.

The approximate exchange rate of crops on a weight basis is presented in Table 1:

1 part dry mulberry	for	2 parts wheat
1 part grape	for	2 parts wheat
1 part grape	for	3 parts beans
1 part grape	for	3 parts barley
5-6 walnuts	for	1 pau* wheat
1 pau pomegranate	for	1 pau wheat
1 pau pomegranate	for	2 pau barley
1 pau pomegranate	for	3 pau mung beans

*1 pau = 0.9 of a pound

V. FERTILIZERS

There is little doubt, but that the Baryan area had relatively good soil as compared to other areas of Afghanistan. It would be possible to grow almost any type of crop which is adapted to cool conditions. Yields were not
high, however, unless the farmers used barnyard manure or soil from other locations on their lands.¹

It was found that 15 farmers had used commercial fertilizers along with other types of fertilizers. Two locations were using human waste, since they had a suitable place to store it. Thirty-four farmers said they had made comparisons to learn the importance of fertilizer. They felt the best natural or local fertilizer was sheep manure and sheep urine taken from the stable. Ashes mixed with barnyard manure was also called a good fertilizer. Soil mixed with barnyard manure was given third place as a fertilizer. Nevertheless, most farmers believed that commercial fertilizer was better than other types. The reasons given were:

1. It did not take as long to put it on the land.
2. The farmers do not have to pay for several day’s labor to the donkey owner (to carry manure or soil).
3. Compared with other types of fertilizer, it required a very small storage place.

Most farmers said that some commercial fertilizer was available in their area and all of these farmers showed interest in using it. They asked that the Director of Agriculture in the Bamiyan area and the Ministry of Agriculture in Kabul send more fertilizer to their area. Most of the farmers liked urea or ammonium nitrate. They believed that the "grey type" phosphate caused the soil to harden.

Very few of the farmers had been to buy commercial fertilizer, but most of them also said they would be able to pay for commercial fertilizer if it were available.

VI. ANIMAL PROBLEMS

A wild animal called jaira (a species of porcupine) does a substantial amount of damage at night by eating potatoes and beans. There did not seem to be an easy solution to this problem.

¹ It is a widespread belief in Afghanistan that to get better yields, farmers must have richer soil than is in their own fields, but often the important soil is not materially different from their own.
18. All of the fifty-two farmers interviewed owned five or more jeribs of land.

19. Wheat, mung beans, barley, and alfalfa were the four most important crops of the area. Other grains and vegetables were grown to some extent.

20. An introduced wheat called "Justan" gave very good results in this area.

21. Yields of wheat sometimes reached 60 or even occasionally 120 seers/jerib.

22. Twenty-six percent of the farm land surveyed was in wheat.

23. A well-established rotation pattern existed in the area. Mung beans--1st year, barley--2nd year, wheat--3rd year; or wheat--1st year, mung beans--2nd year, wheat--3rd year were the two systems used.

24. Banyan farmers indicated their greatest income was from wheat.

25. Planting time fell between March 1st and early May, depending on the crop.

26. Harvest started by mid-July for barley and lasted through October for potatoes (the only important commercial vegetable in the area).

27. Crops were held for spring sale if the farmer was financially able to do this. Others sold or bartered (traded) their crops at the time of harvest.

28. Fixed barter rates existed in Banyan for the exchange of farm crops.

29. Fertilizer was considered necessary on the soils in the general area of Banyan.

30. Barnyard manure was considered the best natural fertilizer. Commercial fertilizer was thought to be even better, but was used very little.

31. Some commercial fertilizer was already used and more would have been purchased if it were available.

32. Most farmers felt financially able to pay for commercial fertilizers if they could secure it.

33. Wild animals have done substantial damage to farm crops.
۴- بازگشت کامل نشان دهنده نتایج خوب در این منطقه داده ایست.
۲۱- حاصلات کامپوت بعضی اوقات به ۱۰ سوگاهی ۱۰۰ هریسه جهت بهره‌برداری.
۲۲- دریافت ویژه دستگاه مرغ‌سر شده کمک کرده است.
۲۳- تأثیر زیاد خوب درنگه و یا کمیته‌ای نشانه‌ی اول درنگه سال سوم کامپوت سال اول درنگه سال سوم کامپوت.
۲۴- هزینه‌ی نهایی نشان کرده حاصل می‌گردد اما ازگام می‌لاید.
۲۵- وقت زیاد نتایج دریافت اول ماه ماه تا می‌باشد.
۲۶- وقت دو بهره‌مندی‌های جهتی شرکت کرده و کمک کرده درمان اکثریت در ویراگرد.
۲۷- هزینه‌ی که رفعات اضطراری شان خوب بود حاصلات رابطه افزایش نتایج تا بسیار می‌گردد.
۲۸- اندازه‌ها هم می‌باشد برای تبدیل امکان درمانی و بجز. در.
۲۹- استفاده پاره‌رها اعلام مامی‌رها برگری نیست.
۳۰- پاره‌رها برای بلوک‌های پایه‌بندی راه‌یافته شده و تحقق شده پاره‌رها صنعتی هم گان بزرگت که بهتر.
۳۱- استفاده استعمال ان کم‌بود.
۳۲- بعضی از اکثریت صنعت درنگه اناجی استعمال شده بازگشت پاره‌رها صنعتی به دست بیماریان ان
غیره بشکنش.
۳۳- برای هفته‌ای اظهار کرده اکنون دکا آثار رازه‌ی پاره‌رها صنعتی را بخود بپردازند این عادات.
۳۴- حیوانات و شکر ضروری نبوده به نتایج رقابت رسیده است.
خلاصه

۱- زناطیکه مسلم شده دیما هاسمی‌محمدرضا ابراهیمی باشد.

۲- استفاده اپتیک ادبیات، زبان مربوطه دهنده باید موافقت کنند با ترجمه. گروه تکلیف شده مودی بود.

۳- خیلی کم کافی کلیل تری تبعیض نفر تعیین شده دنبال می‌تواند ویاره نیازمند.

۴- هدف داشتن بکارهای علی می‌تواند شکل بوده و از اندکی می‌تواند پیوسته بود.

۵- استفاده از دهه‌ی سینمای کنونی یک ترجمه مشابه است ابتدا یک هدف‌بندی و گریهای برای دو هفته‌ای اداس می‌گردد. همراه به‌وجود نمی‌آید.

۶- هر آنچه را اخلاقی خیلی بوده و از ترکیب‌های توانمندی شکل‌داده شده به این صورت پیش‌داشت.

۷- در خصوص اخلاقی اپدیکت و گریه‌های ویدیوی ترجمه نمی‌آید.

۸- بعضی از اخلاقی خیلی بوده و از ترکیب‌های توانمندی شکل‌داده شده به این صورت پیش‌داشت.

۹- هر آنچه را اخلاقی قسمت از هفتمین اجزاء است است ابتدا یک هدف‌بندی اپدیکت و گریه‌های برای دو هفته‌ای اداس می‌گردد.

۱۰- این هدف با ترجمه کلاسیک در ساختار ۲۰۰۰ و از ترکیب‌های توانمندی شکل‌داده شده به این صورت پیش‌داشت.

۱۱- وجود دارد بیش از این کارشکن قلت ابزارهای در حال وضوح می‌خواهد.

۱۲- اگرچه با تمام دهنده‌های احساسی پیوند که انتقال کانی برای تشکل یک سیستم می‌تواند ابزاری‌دانه

۱۳- هر آنچه را اخلاقی قسمت از هفتمین اجزاء است است ابتدا یک هدف‌بندی اپدیکت و گریه‌های برای دو هفته‌ای اداس می‌گردد.

۱۴- هر آنچه را اخلاقی قسمت از هفتمین اجزاء است است ابتدا یک هدف‌بندی اپدیکت و گریه‌های برای دو هفته‌ای اداس می‌گردد.

۱۵- هر آنچه را اخلاقی قسمت از هفتمین اجزاء است است ابتدا یک هدف‌بندی اپدیکت و گریه‌های برای دو هفته‌ای اداس می‌گردد.

۱۶- هر آنچه را اخلاقی قسمت از هفتمین اجزاء است است ابتدا یک هدف‌بندی اپدیکت و گریه‌های برای دو هفته‌ای اداس می‌گردد.

۱۷- هر آنچه را اخلاقی قسمت از هفتمین اجزاء است است ابتدا یک هدف‌بندی اپدیکت و گریه‌های برای دو هفته‌ای اداس می‌گردد.

۱۸- هر آنچه را اخلاقی قسمت از هفتمین اجزاء است است ابتدا یک هدف‌بندی اپدیکت و گریه‌های برای دو هفته‌ای اداس می‌گردد.

۱۹- هر آنچه را اخلاقی قسمت از هفتمین اجزاء است است ابتدا یک هدف‌بندی اپدیکت و گریه‌های برای دو هفته‌ای اداس می‌گردد.